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We consider the two-band double-exchange model for manganites with Jahn-Teller �JT� coupling and ex-
plore the suppression of the ferromagnetism because of the JT distortion. The localized spins of the t2g

electrons are represented in terms of the Schwinger bosons and two spin-singlet Fermion operators are intro-
duced instead of the eg electrons’ operators. In terms of the new Fermi fields the on-site Hund’s interaction is
in a diagonal form and one accounts for it exactly. Integrating out the spin-singlet fermions, we derive an
effective Heisenberg model for a vector which describes the local orientations of the total magnetization. The
exchange constants are different for different space directions and depend on the density n of eg electrons and
JT energy. At zero temperature, with increasing the density of the eg electrons the system undergoes phase
transition from ferromagnetic phase �0�n�nc� to A-type antiferromagnetic phase �nc�n�. The critical value
nc decreases as JT energy is increased. At finite temperature we calculate the Curie temperature as a function
of electron density for different JT energy. The results show that JT coupling strongly suppresses the spin
fluctuations and decreases the Curie temperature.
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Jahn-Teller �JT� effect is related to systems with degener-
ated electronic states.1 The importance of the JT coupling for
manganites was first discussed in Ref. 2 and 3 with regard to
the colossal magnetoresistance. The most widely studied rep-
resentatives have chemical formula Re1−xAxMnO3, where Re
is rare earth such as La or Nd and A is a divalent alkali such
as Ca or Sr. The important electrons in these compounds are
Mn d electrons. They have five degenerate levels.4 The crys-
tal environment results in a particular splitting of the five d
orbitals �crystal-field spliting� into two groups: the eg and t2g
states. The electrons from the eg sector form a doublet while
the t2g electrons form a triplet. The population of the t2g
electrons remains constant and the Hund rule enforces align-
ment of the three t2g spins into a S=3 /2 state. Then, the t2g
sector can be replaced by a localized spin at each manganese
ion, reducing the complexity of the original five orbital
model. The only important interaction between the two sec-
tors is the Hund coupling between localized t2g spins and
mobile eg electrons. The oxygens surrounding the manganese
ion readjust their locations creating an asymmetry between
the different directions. This effectively removes the degen-
eracy of the eg electrons’ states. The lifting of the degeneracy
due to the orbital-lattice interaction is called Jahn-Teller ef-
fect.

The interaction between the electrons and phonons is un-
usually strong and leads to a wide range of striking physical
phenomena. Changing the eg electrons’ concentration pro-
duces a variety of phases, which may be characterized by
their magnetic, transport, and charge-ordering properties.5

The manganites La1−xCaxMnO3 have attracted interest due to
their colossal magnetoresistance. The phase boundary be-
tween ferromagnetism and paramagnetism, in these materi-
als, also separates a low-temperature metallic phase from a
high-temperature insulating phase. At temperatures below
Curie temperature T�TC the resistivity is relatively low and
increases as T is increased, whereas at T�TC the resistivity
is very high and �for most x� decreases as T is increased. The
magnetoresistance for T�TC can be very large.5

The double-exchange model with JT coupling is a widely

used model for manganites. The procedures followed to ob-
tain the essential features of the model are different: numeri-
cal studies,6,7 dynamical mean-field theory,8–10 ab initio
density-functional calculations,11 and analytical
calculations.8,9,12,13 In spite of the common conclusion that
JT coupling suppresses the ferromagnetic state, the results
are quite different and do not match the experimental results.
For example, the calculated Curie temperatures are two and
even three times larger than the experimentally measured.
Because of that it is important to formulate theoretical crite-
ria for adequacy of the method of calculation. In our opinion
the calculations should be in accordance with the Mermin-
Wagner theorem.14 It claims that at nonzero temperature, a
one-dimensional or two-dimensional �2D� isotropic-spin-S
Heisenberg model with finite-range exchange interaction can
be neither ferromagnetic nor antiferromagnetic. We employ a
technique of calculation,15 which captures the essentials of
the magnon fluctuations in the theory and for 2D systems
one obtains zero Curie temperature, in accordance with
Mermin-Wagner theorem. The physics of the ferromagnetic
manganites near the Curie temperature is dominated by the
magnon fluctuations and it is important to account for them
in the best way.

The present paper is focused on the influence of the JT
distortion on the ferromagnetism of manganites. To model
the manganites we employ the Hamiltonian H=HDE+Hel−ph.
The first term describes the hopping of eg electrons and the
Hund interaction between the spin si of the eg electron and
the localized t2g spin Si

HDE = − �
iall��

tll�
a cil�

+ ci+al�� − 2JH�
i

si · Si, �1�

where cil�
+ and cil� are creation and annihilation operators for

eg electron with spin � on orbitala dx2−y2�l=a� and d3z−r2�l
=b� at site i, and a is the vector connecting nearest-neighbor
sites. For the cubic lattice, the hopping amplitudes between
the orbitals along the x ,y ,z directions are
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taa
x = − �3tab

x = − �3tba
x = 3tbb

x = t ,

taa
y = �3tab

y = �3tba
y = 3tbb

y = t ,

taa
z = tab

z = tba
z = 0, tbb

z = 4t/3. �2�

The second term in Eq. �1� is the Hund interaction between
the spin si of the eg electron and the localized t2g spin Si with
si

�=1 /2�l��cil�
+ ���

� cil�, where �x ,�y ,�z are Pauli matrices
and the Hund’s constant JH is positive.

The Hel−ph Hamiltonian models the coupling of eg elec-
trons to the lattice distortion

Hel−ph = g�
i

�Q2i�xi + Q3i�zi� +
k

2�
i

�Q2i
2 + Q3i

2 � , �3�

where �xi=���cia�
+ cib�+cib�

+ cia�� and �zi=���cia�
+ cia�

−cib�
+ cib��. In Eq. �3� g is the electron-phonon coupling con-

stant while Q2i and Q3i are JT phonon modes. The second
term in Hel−ph is the usual quadratic potential for distortions
with constant k. The important energy scale of the phonon-
electron interaction is the static JT energy EJT=g2 / �2k�.

One can represent the spin operators Si of the localized t2g
electrons in terms of Schwinger bosons �	i� ,	i�

† � Si
�

= 1
2���	i�

+ ���
� 	i� and ��	i�

+ 	i�=2s. By means of the
Schwinger bosons we introduce spin-singlet Fermi fields


il
A��� =

1
�2s

�	i1
+ ���cil1��� + 	i2

+ ���cil2���� , �4�


il
B��� =

1
�2s

�	i1���cil2��� − 	i2���cil1���� �5�

and write the spin of the eg electron and the total spin of the
system Si

tot=Si+si in terms of the singlet fermions.15 Further,
we average the total spin of the system in the subspace of the
singlet fermions A and B. The vector Mi= �Si

tot	 f identifies the
local orientation of the total magnetization. Because of the
fact that t2g-electron spin is parallel with eg-electron spin we
obtain Mi=

M
S Si with M =S+ 1

2�l��
il
A+
il

A−
il
B+
il

B�	 f. Now,
if we use Holstein-Primakoff representation for the vectors
Mi�a+ ,a� with M as an “effective spin” of the system �Mi

2

=M2�, the bose fields ai and ai
+ are the true magnons in the

system.
An important advantage of working with singlet fermions

is the fact that in terms of these spin-singlet fields the spin-
fermion interaction is in a diagonal form, the spin variables
�magnons� are removed, and one accounts for it exactly. The
theory is quadratic with respect to the spin-singlet fermions
and one can integrate them out to obtain the free energy of
fermions as a function of the magnons’ fields ai

+ ,ai. We ex-
pand the free energy in powers of magnons’ fields and keep
only the first two terms. The first term Ff0, which does not
depend on the magnons’ fields, is a free energy of Fermions
with spins of localized t2g electrons treated classically. We fix
the model parameters and consider this term as a function of
the JT distortion modes independent on the lattice sites. If we

represent Q2= Q̂ cos � and Q3= Q̂ sin �, the numerical calcu-
lations show that the function does not depend on the angle

�. This allows us to fix �=0 �Q3=0�. The physical value of
the JT distortion is the value at which Ff0 has a minimum. In
this way we obtain the distortion as a function of the density
of eg electrons for different values of JT energy and fixed
Hund’s coupling. We fix the hopping parameter t=1 to set
the energy unit. The results for the renormalized distortion
Q=gQ2 as a function of charge-carrier density n are plotted
in Fig. 1 for different values of the JT energy EJT and JH
=15. Figure 1 shows that JT distortion appears at critical
value of the charge-carrier density n� and increases as den-
sity n is increased. The inset demonstrates that n� decreases
and approaches zero as JT energy EJT is increased.

The second term in the Fermion free energy is quadratic
with respect to the magnons’ fields ai

+ ,ai and defines the
effective magnon Hamiltonian in Gaussian approximation,

Heff = �
ia

�a�ai
+ai + ai+a

+ ai+a − ai
+ai+a − ai+a

+ ai� . �6�

In Eq. �6� �a are spin-stiffness constants which depend on the
space directions a. They are calculated at zero temperature,
for fixed Hund’s coupling, JT energy, charge density, and JT
distortion determined above. The calculations follow the
technique developed in Ref. 15. Based on the rotational sym-
metry, one can supplement Hamiltonian �6� up to an effective
Heisenberg-type Hamiltonian, written in terms of the vectors
Mi

Heff = − �
ia

JaMi · Mi+a, �7�

where Ja=�a /M. The ferromagnetic phase is stable if all
effective exchange coupling constants are positive Ja�0
��a�0�. If one of them is negative, for example, Jy �0
��y �0� and the others are positive Jx�0 and Jz�0
��x�0,�z�0� the stable state is A-type antiferromagnetic
phase which has planes �x ,z� that are ferromagnetic �parallel
moments� with antiferromagnetic �antiparallel� moments be-
tween them. The spin-stiffness constant, as a function of
charge-carrier density, is depicted in Fig. 2 for JH=15 and
three different values of JT energy, EJT=1.73, EJT=2, and
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FIG. 1. �Color online� The renormalized distortion Q=gQ2 as a
function of density n for JH=15 and different values of the JT
energy EJT. Inset: the density n� at which the JT distortion appears
as a function of JT energy EJT.
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EJT=4. The vertical dashed lines correspond to the density n�

at which the JT distortion appears. The figure on the left
illustrates in the best way the impact of the JT distortion on
the spin-stiffness constants. The appearance of the distortion
at n� is accompanied with a change in the slopes of the
curves. The distortion splits the �y �dotted� and �x �dashed�
lines, and �y starts to decrease. At critical density nc and �y

become equal to zero and the system undergoes a transition
from ferromagnetic phase to A-type antiferromagnetic phase.
The two other figures shows that spin-stiffness constants de-
crease when JT energy increases and the critical density nc
decreases too. As the spin-stiffness constants are a measure
for the magnon fluctuations in the ferromagnetic phase we
conclude that JT distortion suppresses the magnon fluctua-
tions.

The most evident consequence of this suppression is the
Curie temperature �TC� decreasing. To calculate TC we utilize
the Schwinger bosons mean-field theory.16 We represent the
vector Mi Eq. �7� by means of Schwinger bosons �
i� ,
i�

+ �

Mi
� =

1

2�
��


i�
+ ���

� 
i� 
i�
+ 
i� = 2M . �8�

Next we use the identity

Mi · M j =
1

2
�
i�

+ 
 j���
 j�
+ 
i�� −

1

4
�
i�

+ 
i���
 j�
+ 
 j�� �9�

and rewrite the effective Hamiltonian in the form

Heff = −
1

2�
ia

Ja�
i�
+ 
i+a���
i+a�

+ 
i�� , �10�

where the constant term is dropped. To ensure the constraint
we introduce a parameter ��� and add a new term to the
effective Hamiltonian �10�,

Ĥeff = Heff + ��
i

�
i�
+ 
i� − 2M� . �11�

We treat the four-boson interaction within Hartree-Fock ap-
proximation. The Hartree-Fock hamiltonian which corre-
sponds to the effective Hamiltonian reads

HH-F =
1

2�
ia

Jaūi,i+aui,i+a + ��
i

�
i�
+ 
i� − 2M�

−
1

2�
ia

Ja�ūi,i+a
i�
+ 
i+a� + ui,i+a
i+a�

+ 
i�� , �12�

where ūi,i+a �ui,i+a� are Hartree-Fock parameters to be deter-
mined self-consistently. We are interested in real parameters
which do not depend on the lattice sites but depend on the
space directions ui,i+a= ūi,i+a=ua. Then in momentum space
representation, Hamilonian �12� has the form

HH-F =
N

2 �
a

ua
2Ja − 2�MN + �

k

�k
k
+
k, �13�

where N is the number of lattice sites and �k is the dispersion
of the 
k boson �spinon�. The free energy of the theory with
Hamiltonian HH-F is

F =
1

2�
a

ua
2Ja − 2�M +

2T

N
�

k

ln�1 − e−�k/T� , �14�

where T is the temperature. The equations for the parameters
ua and � are �F /�ua=0 and �F /��=0.

To solve the system of four equations it is more conve-
nient to introduce a new parameter ��� instead of ���: �
=�a�uaJa+�ua�. In terms of the new parameter the 
k-boson
dispersion is �k=�a�uaJa�1−cos ka�+�ua� and the theory is
well defined for positive constants ua�0 and ��0. For high
enough temperatures ��T� and ua�T� are positive and the
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FIG. 3. �Color online� TC as a function of eg electron density n
for JH=15 and different values of the JT energy.
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FIG. 2. �Color online� Spin-stiffness constants as a functions of density n for JH=15, EJT=1.73 �left�, EJT=2 �middle�, and EJT=4 �right�.
The vertical dash lines correspond to the density n� at which the JT distortion appears.

BRIEF REPORTS PHYSICAL REVIEW B 80, 012403 �2009�

012403-3



excitation is gapped. Decreasing the temperature leads to de-
crease in ��T�. At temperature TC it becomes equal to zero
��TC�=0 and long-range excitation emerges in the spectrum.
Therefore this is the Curie temperature. We set �=0 and
obtain a system of equations for the Curie temperature TC
and ua

ua� =
2

N
�

k

cos ka�

exp
 1

MTC
�

a
ua�a�1 − cos ka�� − 1

,

M =
1

N
�

k

1

exp
 1

MTC
�

a
ua�a�1 − cos ka�� − 1

. �15�

The results for the Curie temperature TC as a function of eg
electrons density n are plotted in Fig. 3 for JH=15 and dif-
ferent values of the JT energy. The upper �black� dashed line
is a reference line which corresponds to the case without JT
distortion. The vertical dashed lines correspond to the den-
sity n� while the ends of the TC−n curves correspond to the
critical density nc at which the system undergoes transition to
A-type antiferromagnetic state. The appearance of the JT dis-
tortion at n� leads to a splitting of the reference curve and the
curve for a system with JT distortion. The density n� de-

creases when JT energy increases and the ferromagnetic
phase is strongly suppressed, which in turn leads to the de-
creasing of the Curie temperature.

So far we have fixed t=1 to set the energy unit. Now, we
want to report the numerical results from Fig. 3 in Kelvin
and in order to do this we utilize t=0.8 eV.10 �Table I�.

We have used a large value for Hund’s constant to better
demonstrate the impact of the JT distortion on the ferromag-
netism. Decreasing of JH suppresses the ferromagnetic
phase, decreases the Curie temperature, and reduces the im-
pact of the JT distortion on the ferromagnetism. For ex-
ample, for JH / t=15 and absence of JT distortion we have
TC=1092 K while for JH / t=5 we obtain TC=738 K. For
nonzero distortion, EJT / t=2, the Curie temperatures are TC
=818 and 620 K, respectively.

In summary, we have shown that JT distortion strongly
suppresses the ferromagnetic order because of the suppres-
sion of the magnon fluctuations, which in turn, results from
the decreasing of the spin-stiffness constants. Our results
demonstrate that the reduction in the Curie temperature due
to JT distortion depends on the value of Hund’s constant JH.

The authors acknowledge the financial support of the So-
fia University under Grant No. 095/2009. This work was
partly supported by a Grant-in-Aid DO02-264/18.12.08 from
NSF, Bulgaria.

*naoum@phys.uni-sofia.bg
1 K. I. Kugel’ and D. I. Khomskii, Sov. Phys. Usp. 25, 231

�1982�.
2 A. J. Millis, P. B. Littlewood, and B. I. Shraiman, Phys. Rev.

Lett. 74, 5144 �1995�.
3 A. J. Millis, Boris I. Shraiman, and R. Mueller, Phys. Rev. Lett.

77, 175 �1996�.
4 E. Dagotto, Nanoscale Phase Separation and Colossal Magne-

toresistance �Springer-Verlag, Berlin, 2003�.
5 P. Schiffer, A. P. Ramirez, W. Bao, and S.-W. Cheong, Phys.

Rev. Lett. 75, 3336 �1995�.
6 S. Yunoki, T. Hotta, and E. Dagotto, Phys. Rev. Lett. 84, 3714

�2000�.

7 T. Hotta, Phys. Rev. B 67, 104428 �2003�.
8 A. J. Millis, R. Mueller, and Boris I. Shraiman, Phys. Rev. B 54,

5389 �1996�.
9 A. J. Millis, R. Mueller, and Boris I. Shraiman, Phys. Rev. B 54,

5405 �1996�.
10 Y.-F. Yang and K. Held, arXiv:0903.2989 �unpublished�.
11 Z. Popovic and S. Satpathy, Phys. Rev. Lett. 84, 1603 �2000�.
12 M. Stier and W. Nolting, Phys. Rev. B 75, 144409 �2007�.
13 M. Stier and W. Nolting, Phys. Rev. B 78, 144425 �2008�.
14 N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 �1966�.
15 Vasil Michev and Naoum Karchev, Phys. Rev. B 76, 174412

�2007�.
16 D. P. Arovas and A. Auerbach, Phys. Rev. B 38, 316 �1988�.

TABLE I. Maximal Curie temperatures �TC
max�K��, for JH / t=15 �JH=12 eV�, different JT energies

�EJT / t�, and the corresponding eg-electron densities �n�.

EJT / t 1.73 1.78 1.80 1.85 2.00 2.50 3.00 3.15 4.00

n 0.42 0.41 0.40 0.39 0.33 0.30 0.283 0.282 0.27

TC
max �K� 1004 988 976 970 818 684 618 594 522

BRIEF REPORTS PHYSICAL REVIEW B 80, 012403 �2009�

012403-4


